
MATSim Model Vienna: Analyzing the Socioeconomic Impacts for Different Fleet Sizes and1
Pricing Schemes of Shared Autonomous Electric Vehicles2

3
4
5

Johannes Müller, Corresponding Author6
AIT - Austrian Institute of Technology7
johannes.mueller@ait.ac.at8
ORCID: 0000-0001-5399-49329

10
Markus Straub11
AIT - Austrian Institute of Technology12
markus.straub@ait.ac.at13
ORCID: 0000-0001-8871-824114

15
Asjad Naqvi16
International Institute for Applied Systems Analysis17
naqvi@iiasa.ac.at18
ORCID: 0000-0002-0986-600919

20
Gerald Richter21
AIT - Austrian Institute of Technology22
gerald.richter@ait.ac.at23
ORCID: 0000-0002-2870-156824

25
Stefanie Peer26
Vienna University of Economics and Business27
stefanie.peer@wu.ac.at28
ORCID: 0000-0002-6106-874129

30
Christian Rudloff31
AIT - Austrian Institute of Technology32
christian.rudloff@ait.ac.at33
ORCID: 0000-0001-5424-856034

35
36
37
38

Word Count: 6171 words + 3 table(s) × 250 = 6921 words39
40
41
42

Submission Date: August 1, 202043



Müller, Straub, Naqvi, Richter, Peer, Rudloff 2

ABSTRACT1
Shared Autonomous Electric Vehicles (SAEVs) are expected to enter the transportation market in2
the upcoming decades. In this paper, we describe the preparation of a MATSim model for Vienna3
in which we add this new service as a new transportation mode. We simulate different pricing4
schemes for various SAEV fleet sizes and analyze their impacts. Our focus is on the impacts in5
regards of socioeconomic heterogeneity.6
One main finding of our paper is that the number of SAEV trips does not necessarily decrease for7
higher fares. It is instead the average travel time of SAEV rides which decreases if the service gets8
more expensive. Our simulation results for higher pricing schemes show that many people switch9
from bike or walk mode to SAEV. Public transport is also highly cannibalized by this new service10
regardless of the price, whereas SAEVs would always replace no more than 10% of car trips.11
SAEVs help reduce travel times significantly. People who do not have a car available in their12
household experience the greatest savings in travel time. A similar high share of SAEV trips is13
done by people older than 35 years. In regards of gender, our results reveal that women tend to use14
SAEVs for shorter trips.15

16
Keywords: MATSim; SAEV; demand responsive transportation; subpopulations; socioeconomic17
heterogeneity18
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INTRODUCTION1
Shared, autonomous, electric vehicles (SAEVs) are expected to be gradually released to the market2
in the upcoming decades. There is a broad consensus that they will play a substantial role in3
future transport systems. The typically strong path-dependencies in the transport sector and, as a4
consequence, the risk of sub-optimal equilibria render it essential to investigate the potential effects5
of different policies related to SAEVs before their market introduction (Adler et al. (1)).6

It is particularly important to investigate which socioeconomic groups are likely to benefit7
from the introduction of SAEVs in terms of accessibility. Just as other transport modes, SAEVs8
are likely to have heterogeneous impacts on different population groups, depending on their home9
location, trip patterns, as well as their mobility-related preferences (for instance, the extent to10
which they value travel time savings). For instance, Meyer et al. (2) show that persons living in11
sub-urban areas will have over-proportionally large gains from the arrival of SAEVs. The same is12
true for persons who can use their commuting time productively (Malokin et al. (3)).13

In this paper, we conduct various simulations which have in common that SAEVs, which14
are assumed to be fleet ownership, are added to the transport system of the city of Vienna (Austria)15
and surrounding areas. We use the well-known MATSim software for the simulations (Axhausen16
et al. (4)). The scenarios differ in terms of SAEV fleet size and the pricing of the SAEVs, as17
these two factors are expected to have substantial implications on the usage of SAEVs (e.g. Hörl18
et al. (5)). In contrast to macroscopic traffic assignment software such as VISUM, the traffic19
demand can be traced back to the single agent. This enables us to characterize the potential user20
of SAEVs in the future. For each scenario, we show to which extent the availability of SAEVs21
leads to mode switches among specific population groups, which are assumed to differ in terms of22
their socioeconomic characteristics and, based on these, their time and mode preferences, as well23
as their home location and demand for travel on an average day. The results of these scenarios24
provide us with an indication of the heterogeneous accessibility impacts of SAEVs. These can25
provide guidance to policy makers regarding regulative (e.g. fleet size limitations, SAEVs limited26
to specific areas) as well as pricing measures (e.g. road tolls).27

We contribute to the literature on heterogeneity of SAEV impacts, which so far has been28
mostly derived from preference studies at the level of the individual traveler (e.g. Spurlock et al.,29
Zhou et al. (6, 7)), and hence approached mostly from the demand side. The supply side of SAEVs30
has been captured in various simulation models, the most well-known ones probably being Austin31
(e.g. Chen and Kockelman (8)), Berlin (e.g. Bischoff and Maciejewskia (9)), and Zurich (e.g.32
Hörl et al. (5)). While these models pay much attention to spatial heterogeneity, little emphasis33
is placed on socioeconomic heterogeneity. Our model combines a demand-side component that is34
able to represent heterogeneity in various dimensions (not limited to spatial heterogeneity) and a35
supply-side component where SAEVs are added to the existent transport network of Vienna and36
surrounding regions.37

The structure of the remainder of the paper is as follows. The section Methodology dis-38
cusses the methodology, specifically the MATSim model and its parametrization as well as the39
simulated scenarios in terms of SAEV fleet size and pricing. In the section Results, we present the40
simulation outcomes. The section Discussion discusses the implications and in the final section41
Conclusion we summarize the findings.42
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METHODOLOGY1
Description of the MATSim model for Vienna2
Area and Network3
The simulation region of the MATSim model covers the whole city of Vienna as well as the sur-4
rounding area within a radius of roughly 30 km around the city center (Fig. 1a)). The boundary5
is not a perfect circle but was chosen such that infrastructure that is important for traffic in this6
region is included as well. One example is the Danube crossing near Hainburg. It lies outside of7
the radius, but since it is the only possibility to cross the river East of Vienna, it is included as8
well. The population of the city of Vienna and the metropolitan area as of 2019 are 1.91 million9
and 2.85 million (10), respectively. Overall, the simulation area covers 4170km2. The car routing10
graph for the simulation region is based on OpenStreetMap (OSM) data and consists of around11
156,000 links and 71,000 nodes.12

FIGURE 1 Maps for the simulation area. The red-framed area marks the city of Vienna.
Blue dots indicate the location of facilities.

Simulated population generation13
Initial daily schedules of the simulated mobility population were created by cleaning, geo-constrai-14
ning and resampling data of the Austrian national mobility-survey “Österreich unterwegs 2013/15
2014” (11), or “ÖU13/14”, for the described region of greater Vienna.16

Resampling was done to retrieve approximately 12.5% of the total surveyed population17
within the target area, which results in a set of about 2×105 agents in the simulated scenarios.18
Computation requirements for the simulation are not high: recent consumer-grade hardware can19
run 100 iterations of the MATSim simulation in less than twelve hours given there is at least 12 GB20
of RAM available.21

Together with a data set of potential activity locations (home, work, education, shopping,22
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leisure, errand) for the agents, which are based on land use categories and points of interest (both1
derived from OSM) as well as open data for population density (12) and workforce (13). An algo-2
rithm for spatial dis-aggregation of the survey’s activity location information (given as municipal3
code only) was used to assign realistic coordinates for the simulated agent destinations. The im-4
plementation of this algorithm relies on the reported trip times and distances as available in the5
travel survey data. It finds optimally fitting locations for each agent’s chain of activities within the6
sets of possible locations for each activity type.7

Socioeconomic characteristics as described in 3.1.4 were derived from the data in the8
“ÖU13/14” survey and correspondingly added as binary variables to the mobility population data9
set. The resulting set of agents and their daily-travel schedules (“plans”) was transformed to a valid10
MATSim mobility-agent population description, consecutively.11

Intermodal routing12
For intermodal routing we do not use the MATSim router but instead integrate the AIT intermodal13
routing framework Ariadne (Prandtstetter et al. (14)) into the simulation cycle. This is done for14
two reasons: First, MATSim is currently not capable of intermodal routing, which is not trivial to15
implement. Therefore, leveraging our well tested routing framework reduces the required effort.16
Second, a tight integration of routing and mode choice while separating this part from the MATSim17
iterations provides performance benefits as described in (15).18

Prior to running the MATSim simulations all candidate plans, i.e. plausible intermodal19
plans for the whole day of the agent, are calculated and cached. The agents’ mode availability and20
location of personal vehicles is respected, i.e. personal vehicles must be brought back home at the21
end of the day and can only be used at a certain location when the agent drove there before.22

The transportation modes drt, car, public transport, bike and walk are covered by our model,23
of which only cars and drt vehicles are simulated on the MATSim network. The other modes are24
teleported while retaining the detailed travel time calculated by the intermodal router. Different25
cycling speeds due to topography and public transport time tables can thus be taken into account.26

Subpopulations27
To model different behavioral patterns within subpopulations, the synthesized population described28
above is split into 10 subpopulations based on socioeconomic characteristics. For each subpopula-29
tion, we derive a distinct set of parameters that is used in the scoring function of the MATSim model30
(Axhausen et al. (4)) and the model calibration. More specifically, the mode-specific constants, the31
value of travel time savings (VTTS), the Value of Leisure (VoL), and the disutility associated with32
transfers vary across sub-populations (we present the parameter values in Section 3.1.6, Table 2).33
Note that the VTTS equals the VoL (i.e., opportunity costs of time) minus the direct utility (or34
disutility) derived from the time spent traveling (which typically depends on travel conditions such35
as crowding, comfort, and the possibility to use the travel time productively).36

The parameters of the subpopulations are derived from the Mobility-Activity-Expenditure37
Diary data described in Hössinger et al. (16). This data source contains a weekly mobility and38
activity diary as well as expenditures from a representative sample of Austrians. In addition,39
stated preference data on hypothetical mode choice situations from the same individuals have been40
collected. The detailed data do not only allow for the estimation of the VTTS and other mobility-41
related preference parameters, but also for the estimation of the VoL, which is the marginal utility42
associated with those activities to which more time than the necessary minimum is assigned (such43
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as leisure activities). The empirical model follows the theoretical framework developed by Jara-1
Díaz et al. (17).2

Estimating of the VoL requires fitting the observed expenditures and time use patterns3
against the utility-maximization framework developed by Jara-Diaz and co-authors, using maxi-4
mum likelihood estimation. The VTTS and other travel-related preference parameters, in contrast,5
can be derived from a (discrete) mode choice model applied to all trips contained in the sample. For6
the Austrian data set, these estimations have been performed separately (the VoL estimation can be7
found in Hössinger et al. (16) and the VTTS estimation in Schmid et al. (18)), but also jointly in8
Jokubauskaitė et al. (19), which has the advantage that correlations between time use, expenditure9
and mode choice behavior can be accounted for in a coherent way. The parameters used in this10
paper are also derived from a joint estimation, albeit somewhat different from Jokubauskaitė et al.11
(19) in order to simplify how socioeconomic characteristics can be combined into subpopulations.12
The parameters presented here are derived from a Latent Class Model - a classification model to13
assign observable discrete variables to latent classes - (see for instance Greene and Hensher (20)),14
in which all model components are connected via a joint likelihood function and an overarching15
class membership equation.16

The mode choice model that is part of the joint estimation is a more parsimonious version17
of the model presented in Schmid et al. (18), and uses actual and hypothetical trip data. The18
time use and expenditure equations are estimated in a similar way as in Hössinger et al. (16) and19
Jokubauskaitė et al. (19). We estimate two classes of coefficients for all parameters, since not20
much explanatory power is gained by introducing more classes. The class membership equation21
then determines for each individual the class membership probability, i.e. how much weight each22
class of coefficients has for a specific person. The class membership probability in turn is a linear23
function of several binary socioeconomic variables sex, age below 35, age above 55, income higher24
than median, education high-school or above, living in urban area, kids living in the household,25
single household and full time work with at least 38 hours a week. These socioeconomic variables26
were chosen since they were available both in the estimation data as well as in the synthesised27
population. An exception is the high income variable for which the self-reported living standard28
was used as a proxy. An overview of the variable distribution among the agents of our population29
is shown in Table 1.30

The subpopulations are then determined as the 10 regularly spaced quantiles of the class31
membership probabilities. The characteristics of the different subpopulations can be seen in Fig.32
2. Differently pronounced socioeconomic characteristics of the subpopulations become apparent.33
As an example, Class 1 is dominated by highly educated males in urban areas and in full time34
employment, while Class 7 mostly contains young urban females with kids, without higher educa-35
tion and without full-time employment. The VoL and mobility-related preference parameters are36
calculated for each of the ten subpopulations by averaging over the personalised parameter values.37

The SAEV fleet38
We implemented SAEV vehicles in the simulation as demand-responsive transportation (drt) ser-39
vice by using MATSim’s drt module. These vehicles are planned as automated, electric vehicles40
with a maximum capacity of 4 passengers. Ridesharing will be executed in case there are ride41
requests in the proximity of the vehicle and the the agents’ destinations do not differ too much.42
The SAEV vehicles have a battery capacity of 20kWh and can be charged at one of the more than43
900 charging points (587 in the city of Vienna), each of which have 2 plugs. Existing charging44
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TABLE 1 Descriptive statistics by sub-populations

Mean SD

Gender (1=Male) 0.478 0.499
Urban (=1) 0.744 0.436
Single (=1) 0.217 0.412
Kids (=1) 0.356 0.479
Age >= 35 (=1) 0.248 0.432
Car (=1) 0.612 0.487
Education (=1) 0.337 0.473
Employed (=1) 0.509 0.500
Income high (=1) 0.426 0.494

Observations 200,036

stations as well as gas stations and taxi stands, all taken from OSM, were considered as charging1
locations.2

For each of the scenarios that are presented in 3.2 we assume that there is only one fleet3
operator with one price scheme operating as door2door service. The actual implementation of such4
a SAEV fleet in real life is difficult to predict as fully-automated vehicles (21) will not be available5
for city traffic for another 10 years (22). This is the reason why several parameters relevant for6
the operation of the fleet (e.g. base fare, minimum fare) could not be chosen based on a business7
model of an actual fleet operator but were disregarded instead. We assume that there will be a8
rebalancing of the SAEV vehicles every 30 minutes based on the demand which is aggregated over9
cells with a size of 500 m. The SAEV vehicles are randomly distributed across the simulation area.10
Idle vehicles will return to one of these starting locations as they are regarded as depots. At the11
beginning of each simulation iteration, the SAEV vehicles will again start from these predefined,12
random locations.13

The SAEV rides are simulated on MATSim’s car network. The maximum waiting time14
is set to 10 minutes. If this waiting time is exceeded, the request will be rejected. For boarding15
and disembarking the drt vehicle one additional minute of travel time is added. The logic of the16
simulation is that an agent only requests a SAEV vehicle as soon as the previous activity has17
finished. Then the scheduler of the drt module assigns a vehicle to the agent. This means that18
agents always have to wait for the drt pickup.19

Parametrization of the utility function20
Based on the model described in Section 3.1.4, the parameters in Table 2 show the estimated VTTS21
for every mode (βmode) and the according mode-specific constants (cmode), whereby the cwalk is set22
to 0 for all subpopulations. The values are already standardized by the marginal utility of income23
of the mode choice model, such that the marginalUtilityOfMoney can be left to 1. The VoL,24
which is in MATSim literature often referred to as βdur, and βlineSwitch can be taken directly as25
MATSim configuration parameter performing and utilityOfLineSwitch, respectively. The26
parameter marginalUtilityOfTraveling_util_hr for the respective modes and subpopula-27
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FIGURE 2 Mean prevalence of binary socioeconomic characteristics within the ten subpop-
ulations, determined by application of the class membership model of the latent class model.
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tions is however differently implemented (Axhausen et al. (4), p.32) and therefore defined as the1
sum of βmode and βdur.2
Additionally, the parameters for lateArrival, waiting and waitingPt are set manually. Ac-3

cording to the meta-analysis by Wardman et al. (23), the disutility for arriving 10 minutes too late4
at an activity amounts on average to 1.9 times the disutility associated with a 10-minute increase5
in in-vehicle time, whereas waiting for a facility to open is penalized by 1.83 times pt-in-vehicle6
time, and waiting for public transport by 1.77 times pt-in-vehicle time. In accordance to the imple-7
mentation in MATSim (Axhausen et al. (4), p.29), we therefore set8
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TABLE 2 Parameters from the choice model to calculate the subpopulations’ parameters for
the Charypar-Nagel function. cmode refers to the not yet calibrated constants, βmode to the
value of travel time savings (VTTS), and βdur indicates the value of leisure.

subpop cbike ccar cpt βbike βcar βpt βwalk βlineSwitch βdur

1 2.55 0.85 0.14 -9.38 -12.20 -5.29 -11.06 -0.71 10.71
2 2.72 0.80 0.13 -10.50 -12.29 -5.47 -11.39 -0.75 9.34
3 2.85 0.76 0.12 -11.38 -12.36 -5.61 -11.65 -0.78 6.75
4 2.94 0.74 0.12 -11.99 -12.40 -5.70 -11.83 -0.80 9.11
5 3.04 0.71 0.12 -12.65 -12.45 -5.81 -12.03 -0.83 7.35
6 3.18 0.67 0.11 -13.53 -12.52 -5.95 -12.28 -0.86 9.99
7 3.28 0.64 0.10 -14.20 -12.57 -6.05 -12.48 -0.88 13.02
8 3.42 0.59 0.10 -15.15 -12.64 -6.20 -12.76 -0.92 7.28
9 3.66 0.52 0.09 -16.73 -12.76 -6.45 -13.23 -0.97 6.23

10 4.09 0.39 0.07 -19.58 -12.97 -6.90 -14.07 -1.08 5.92

lateArrival= 1.9× (βcar +βpt)/21

waiting= 1.83×βpt +βdur2

waitingPt= 1.77×βpt +βdur34
The costs for driving and owning a car follow estimations by (24) for average vehicles and5

are considered by setting dailyMonetaryConstant to −13.521 and monetaryDistanceRate to6
0.00009 (0.09 EUR/km). Costs for cycling were estimated as 1 EUR/day based on (25). The travel7
costs for public transport were manually configured by averaging fares from station to station.8
This results in costs of 1.60 EUR/day in Vienna (0.67 EUR/day for trains) and 1.38 EUR/day (and9
additional 0.15 EUR/km) outside of Vienna.10

The costs associated with SAEVs consist of time costs as well as fares (the latter differ11
across scenarios and will be specified when introducing the scenario). In line with several studies,12
we assume that the VTTS associated with riding a SAEV is similar to the VTTS of car passenger:13
whereas Lu et al. (26) found no differences in the VTTS between drivers and passengers of a car,14
Fosgerau (27) and Ho et al. (28) come to the conclusion that the VTTS for a passenger can be15
regarded as about 75% of the rate for car drivers. We follow in our model these latter findings.16

Calibration process17
The model was calibrated by the modal split per trip that was taken from “ÖU13/14”. By adjusting18
the constants along all subpopulations (car: −1.25, bike: −8.75, pt: −5), we achieved a simulation19
equilibrium with a deviation of the modal split by trips of less than 1% for each mode. The modal20
split per kilometer also deviates only by a few percentages. This rather good fit was the result of an21
a priori selection of activity locations that optimally fit the activity chains and the corresponding22
reported travel times and distances from "ÖU13/14".23
Cadyts (Flötteröd et al. (29)) was used simultaneously during the search for optimal constant pa-24
rameters to align the simulated traffic volumes with the measured traffic counts. From the 18025
count stations in our whole network, 95 are placed in Vienna. During the morning and after-26
noon rush hour (6am-9am, 3pm-6pm), the sum of the normalized error at the count stations in27
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Vienna is about 0.35, whereas the relative error is below 0.06. We ran the simulations with 5001
iterations though an equilibrium was already reached after around 150 iterations. The reason for2
this low number of necessary iterations is mainly the intermodal Ariadne router which helps re-3
ducing the number reasonable alternative routes for the agent. Freight and delivery - which is4
estimated to have a share of 8-13% of the traffic in Vienna - is taken into account by reducing the5
flowCapacityFactor by 10% and increase the countsScaleFactor to 10.6

Scenarios for SAEVs7
One of our research questions is to assess the acceptance and benefits of SAEVs among different8
population groups. As we do not focus on one specific operation model, we analyze different pric-9
ing schemes and vary the fleet size. Next to the fix VTTS for the SAEV which is described in 3.1.610
we run simulations with different time-based fares between 0.00 EUR/min and 0.50 EUR/min.11
There is no minimum fare or base fare implemented. The different fleet sizes are 100, 250, 500,12
1000 and 2500 vehicles. As our model is based on a countsScaleFactor of 10, the real fleet sizes13
would be ten times higher. The highest simulated drt fleet represents around 3.5% of the current14
fleet of private vehicles in Vienna (2019: 715 000 (30)), but is already more than three times higher15
than the current taxi fleet in the city(7500 taxis, (31)).16

RESULTS17
The SAEV rides analyzed in this section always refer to the total number of rides over the day18
unless otherwise stated. Though the model fits best for trips with destination or origin in Vienna19
during rush hours, we could observe all patterns described in the following section for all SAEV20
trips in the whole area and at any time.21
In the first part (4.1), we describe the general usage of SAEV vehicles in the simulated scenarios.22
The second part (4.2) addresses the question of how agents with different socioeconomic charac-23
teristics use the SAEV vehicles.24

General analysis of the scenarios25
Use of SAEV vehicles26
The distributions of SAEV trips over the day does not follow the typical camel function in trans-27
portation which reflects traffic peaks in the morning and afternoon rush hours. Instead, the demand28
usually remains stable over the day and peaks in the late morning hours (see Fig. 3). For larger29
fleet sizes, a higher deviation in the number of trips becomes apparent which holds true especially30
in the afternoon.31

An interesting phenomenon is the increasing number of trips for fleet sizes of 500, 1000 and32
2500 vehicles when the SAEV fares increase (Fig. 4 a)). This is a very counter-intuitive behavior33
of the agents as one would expect a decreasing number of trips with SAEV for increasing fares. It34
is also remarkable that for fleet sizes of up to 1000 vehicles the number of trips reach its maximum35
at a price of 0.40 EUR/min. We found a plausible explanation for this pattern by considering the36
average driven distance and duration of trips with SAEVs. It is clearly visible that the average trip37
duration - which is highly correlated to the average trip distance – decreases for higher time-based38
fares. The product of these two measures represents the total usage time of SAEV vehicles and39
shows the expected decrease for increasing fares (Fig. 4c)).40
Another conspicuousness are the results for small fleet sizes and especially for the fleet of 10041
vehicles. Neither the total number of trips nor the average trip duration follow strictly the observed42
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FIGURE 3 Use of SAEVs by time of day

NOTE: Dark lines show the median (50th percentile) and the bands show 10-90th percentiles for the different
pricing schemes.

pattern of the other fleets. We therefore conclude that a density of 0.05 SAEV vehicles per 10001
agents is too low to fulfill the demand for this service.2

Mode switch to SAEV3
The modal split of SAEV increases with a larger availability of vehicles and lower fares. While4
the share is still 0.5% for 100 vehicles, it grows to as much as 14% for 2500 vehicles.5

Fig. 5 shows the share of trips that switched from other modes to SAEVs as the main mode.6
The x-axis represents the different pricing schemes (0.00 EUR/min to 0.50 EUR/min) while the7
colors represent the different SAEV fleet sizes introduced on the roads. The percentage share8
of trips that switched to SAEVs is plotted on the y-axis. Since trips can be multi-modal in the9
simulation and thus consists of different modes for each leg, a main travel mode for each trip is10
elicited based on the hierarchy provided in “ÖU13/14”. The sequence of prime modes is defined11
as PT > Car > Bike > Walk. For the purpose of this paper, we also assume that SAEVs trump12
all other modes or SAEVs > PT. Since the simulations provide unique identifiers to each trip, it is13
possible to compare the main modes across different experiments.14

The biggest switches happen from biking and public transport (PT). The introduction of15
SAEVs strongly impacts trips with walking (Fig. 5a) and biking (Fig. 5b) as the main modes.16
The higher the price and the larger the fleet, the more likely is it that agents switch from bike or17
walk to SAEV. This result is not surprising as we have revealed that trip distances and durations18
decrease for higher fares. These trips are more typically done by using bike or walk as main mode.19
The strong cannibalization of PT trips can be explained by a missing car availability of agents. By20
providing a new mode opportunity, travel time savings become very likely for those people. We21
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FIGURE 4 Number of trips, average duration and total usage time of drt vehicles

(a) Number of trips with SAEV

(b) Average duration of SAEV trips

(c) Number of SAEV trips × average duration of SAEV trips
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will have a closer look at car availability in 4.2.1.1
Cars travelers have the lowest response to the introduction of SAEVs with less than 10%2

switching even with 2500 SAEVs on the road. Both car and PT trips are sensitive to prices changes3
and show a reduction in demand for SAEVs at the highest price level.4

FIGURE 5 Share of trips that switch to SAEVs by main mode

(a) Walk (b) Bike

(c) Car (d) PT

SAEV as ridesharing service5
An essential characteristic of SAEV vehicles is the option for ridesharing. Agents do not neces-6
sarily take the direct way to their next activity but accept a bearable detour on their trip if another7
agent requests to share the ride. This detour factor compares the rate of the actual taken route with8
the most direct connection that the agent would have taken if it would not share the vehicle. Du-9
ration detour factors are naturally higher because the routed duration is taken as reference which10
does not consider congestion or other delays. This number therefore cannot be considered as factor11
to compare SAEV trip durations to car trip durations.12

The analysis of the detour factors for the trip distances show no remarkable change for the13
different fleet sizes. They mostly remain between 1.11 and 1.16. Higher prices result in higher14
distance detour factors. This holds also for detour factors of the trip duration. In contrast to15
the distance detour, this measure increases for larger fleets (up to 2.20 for 2500 vehicles, 0.5016
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EUR/min). We expect that these results originate from the shorter distances of trips. As described1
in 3.1.5, the agent’s trip duration is increased by one minute for boarding and alighting the vehicle.2
Other passengers in the vehicle will be affected by this rule. For shorter trips, this setting becomes3
more visible in the duration detour factor.4

The occupancy rate of vehicles shows a clear pattern over all scenarios. It is higher for5
lower prices, and higher for larger fleet sizes. For a SAEV fleet of 100 vehicles, it ranges between6
1.55 (0.00 EUR/min) and 1.49 (0.50 EUR/min), whereas is drops from 1.78 to 1.58 in the scenarios7
with 2,500 SAEV vehicles. This measure is calculated as average of the occupancy rates of vehicles8
which is observed every 5 minutes. Therefore, the results reflect the higher attractiveness of SAEVs9
if the price is lower.10

Another interesting figure is the share of vehicles that is not driving. For scenarios with11
a fleet size of up to 500 vehicles, this share increases for higher fares (from 58% to 66%). For12
large fleet size, this share remains similar over all prices (1000: 64%, 2500: 70%). A similar13
pattern occurs for the average kilometer driven by a SAEV. In scenarios with 100, 250 or 500 vehi-14
cles, the average distance drops from around 295 km/veh (0.00 EUR/min) to 230 km/vehicle (0.5015
EUR/min). The larger the fleet size, the smaller the is the difference among all pricing schemes.16
For 1000 vehicles, the average is between 250 and 243 km/veh and for 2500 vehicles between 20217
and 198 km/vehicle These numbers are similar, though slightly lower than reported average trip18
distances of taxis in urban areas (e.g. New York: 290 km/shift (32), Hangzhou is 336 km/day (33)).19

20

Use of SAEV in different socioeconomic groups21
While describing the general use of SAEVs in 4.1, we will now look closer of how agents with spe-22
cific socio-demographic characteristics use SAEVs. The distinction of subpopulations as described23
in 3.1.4 is a convenient way to implement the various mode choice behavior of people. However,24
the interpretation of the results under the consideration of subpopulations remains difficult. A25
main issue is the characterization of the subpopulations which does not follow standardized social26
milieus. Therefore, we will present the analysis of the scenarios along common socioeconomic27
characteristics to facilitate the understanding and transferability of the results.28

In the beginning, we have a closer look at two variables that might influence different use of29
SAEVs: gender and car availability in the household. To reveal differences in the usage behavior of30
the agents, we will redo some of the previous analysis in 4.1 by separating the data sets according31
to the social characteristic. After that, we will additionally look at the age distribution of SAEV32
users. Finally, we will use a scenario as an example to describe which agents benefit from the33
introduction of a SAEV service.34

Gender and car availability35
Separating the number of SAEV trips by gender does not reveal significant differences in the36
general pattern (Fig. 6a)). It is however apparent that women use this service slightly more often37
than men. This difference becomes more pronounced with higher fares and larger fleet size. The38
analysis of trip durations reveal that female agents do in average shorter trips with SAEV vehicles39
in all scenarios.40
The availability of a car in the household is an interesting characteristic to look at as SAEV bears41
the chance to eventually reduce car ownership. In the scenarios with no or low fares for SAEVs,42
there are significantly less SAEV trips done by agents that have no car available in their household43
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(around 20-25% less). However, this difference disappears with higher pricing schemes. The1
SAEV trips of agents with no car in their household are in average a bit shorter in scenarios with2
low pricing schemes (Fig. 6b)). These numbers are becoming more similar for higher fares.3
Fig. 6c) shows the average age of agents that used SAEV vehicles. There is a clear gap between4
the group of agents who have a car available and those who do not. Agents with access to a private5
car are in some scenarios in average more than six years older. This phenomenon may occur since6
agents without a car in their household are younger on average. In terms of gender, we see a7
difference of three to four years in average age. Across all scenarios, women who use the SAEV8
service are older than men.9

Benefits of SAEV for socioeconomic groups10
In this last section we leave the method of scenario comparison and instead take one example11
scenario as an experiment for our analyses. We are interested to which extent certain population12
groups benefit from the introduction of SAEVs in the market. For this purpose, we focus on travel13
time savings as a success indicator.14

As benchmark experiment we consider the scenario with 1000 vehicles and a fare of 0.3015
EUR/min. Table 3 provides a summary of travel time savings by different socioeconomic groups16
resulting from the introduction of SAEVs. The first two columns show the average travel times per17
trip over all trips in the experiment. Column 3 indicates the share of trips that switched to SAEVs18
which can be regarded as the modal split of SAEVs in this particular population group. The last19
two columns show the average travel time of those trips that were made in the experiment with a20
SAEV.21

It is no surprise that the overall effect of SAEV on travel time savings is not remarkable.22
For the specific trip, however, the agent saves on average more than 12 minutes. The strongest23
drop is observed of those with no car availability in their household. This also explains the high24
attractiveness of the service which results in the highest modal split of SAEV among all population25
groups. Also agents with age over 35 years and those who live in urban areas are more likely to26
take the SAEV vehicles than other ones. Agents in rural areas make below-average use of the27
service which clearly results from the comparable low travel time savings.28

DISCUSSION29
In this paper, we described the preparation of a MATSim model for Vienna and added a new ser-30
vice of shared autonomous electric vehicles as transportation mode to it. While impacts of SAEV31
fleets have often been described in literature under the aspect of spatial heterogeneity, we focus in32
our work on the socioeconomic heterogeneity. Our MATSim model takes different behavioral pat-33
terns of people into account by splitting the population in subpopulations based on socioeconomic34
characteristics. We discuss different scenarios which vary in the number of SAEV vehicles and the35
time-based price that is charged. These settings are considered as different policy options, so that36
the results of this paper can also be taken as guidance for policy makers in promoting or restricting37
the operation of this service in future.38

Before describing the main findings of our study, we want to consider the limitations of39
our approach. A very general aspect that a MATSim model cannot reflect is the varying demand40
for mobility needs. Travel time savings as consequence of SAEV services will therefore always41
be beneficial for the system, though there have been various studies on the phenomenon of in-42
duced traffic (34). Apart from these general issues, scholar might argue that the chosen number of43
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FIGURE 6 Number of trips separated by gender, average duration for SAEV trips separated
by car availability and average age of agents separated by car availability.

(a) Number of trips with SAEV separated by gender

(b) Average duration of SAEV trips separated by car availability

(c) Duration
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TABLE 3 Socioeconomic variables and travel time savings with SAEVs for the scenario with
fleet size 1000 vehicles and a fare of 0.30 EUR/min (=Experiment). Columns 1–2 show the
average travel time per trip in minutes. Column 3 lists the share of trips that switched to
SAEV as the main mode. Columns 4–5 consider only the trips that switched to SAEVs.

All trips SAEV as main mode

(1) (2) (3) (4) (5)
Baseline Experiment % switch Baseline Experiment

Overall 30:57 30:21 5.89 34:58 22:22
Male 32:10 31:30 6.08 36:25 23:40
Female 29:52 29:20 5.71 33:36 21:09
Rural 33:04 33:11 3.72 29:45 21:00
Urban 30:15 29:25 6.60 35:56 22:38
Single: No 31:12 30:40 5.68 34:50 22:40
Single: Yes 30:03 29:15 6.62 35:24 21:29
Age ≤ 35 31:42 31:05 5.62 36:14 23:31
Age > 35 28:47 28:14 6.64 31:53 19:35
Car: No 31:44 30:29 7.10 39:06 21:52
Car: Yes 30:31 30:17 5.21 31:53 22:45
Employed: No 28:22 27:47 5.63 32:36 19:44
Employed: Yes 33:26 32:50 6.13 37:05 24:44
Income high: No 31:48 31:02 6.29 36:53 22:42
Income high: Yes 29:51 29:28 5.36 32:03 21:53
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subpopulations seems arbitrary and not well motivated in our approach. We admit that this gran-1
ularity of distinction was a first assumption that we pursued further, since the parameters for the2
utility functions showed a plausible ratio of variability. Future research on the effects of different3
numbers of subpopulations may help to solve this open issue.4

Another critical point is that we currently do not focus on underlying business models. We5
assume instead that costs are covered for the provider, and the fleet provider would not be able to6
increase its profits by reducing the fleet size.7
The MATSim model allows a more precise formulation of the business models. Not only can time8
and distance dependent price tariffs be selected, but also different service models can be chosen. In9
addition to the door-to-door service simulated by us, the business area can be limited to a section10
of the simulation area, or only certain stops can be selected as pick-up and drop-off stations. An11
option not yet used in our simulations is the iterative adjustment of the SAEV distribution. In the12
presented version of the scenarios, the vehicles are placed at the initially selected locations in each13
iteration. This can optionally be controlled in such a way that the locations of the last drop-offs14
from the previous iteration are selected. Thus, the SAEV distribution will be adapted to the needs15
of the agents throughout the iterations and another important insight for operators and planners can16
be gained from the model. Likewise, the frequency of vehicle reallocation (currently 30 min) is17
variable.18

CONCLUSION19
One main finding of our paper is that the number of SAEV trips does not decrease if the fares are20
higher. Our simulation shows that up to a certain price – in our case 0.40 EUR/min – people will21
use the service even more. However, the average trip duration decreases when the service gets22
more expensive.23

A positive effect of SAEVs is the better accessibility of places. Travel time savings for the24
trip that a SAEV was chosen for are about 10 to 12 minutes on average. A particularly large reduc-25
tion in travel time is achieved by people who do not have a car in their household. SAEVs are far26
better accepted in urban than in rural areas. We conclude that there are other policy interventions27
necessary to promote SAEVs in the suburbs. Occupancy rates range from 1.5 to 1.7 and are hence28
above the average of 1.15 to 1.3 for private cars in Austria (35). The time that a vehicle is not29
in use (max. 70%) is also far lower than for private vehicles. A spatial optimized distribution of30
vehicles will be even more beneficial.31

The fact that shorter trips are preferred for higher SAEV fares also results in a high mode32
switch from pedestrians and cyclists to SAEVs, especially for higher fares. Public transport is33
highly cannibalized by the new service regardless of the price, whereas SAEVs would always34
replace no more than 10% of car trips. As the common goals for policy makers is to promote35
active mobility, it remains a challenge to formulate appropriate policies that have the desired effect36
of bringing car drivers to SAEVs and other environmentally friendly mobility modes.37

Further information about the AIT’s MATSim model Vienna can be found in the corre-38
sponding github repository (https://github.com/dts-ait). The MATSim software is openly39
available at https://github.com/matsim-org/matsim/releases.40

https://github.com/dts-ait
https://github.com/matsim-org/matsim/releases
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